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A phase response curve �PRC� characterizes the signal transduction between oscillators such as neurons on
a fixed network in a minimal manner, while spike-timing-dependent plasiticity �STDP� characterizes the way
of rewiring networks in an activity-dependent manner. This paper demonstrates that these two key properties
both related to the interaction times of oscillators work synergetically to carve functionally useful circuits.
STDP working on neurons that prefer asynchrony converts the initial asynchronous firing to clustered firing
with synchrony within a cluster. They get synchronized within a cluster despite their preference to asynchrony
because STDP selectively disrupts intracluster connections, which we call wireless clustering. Our PRC analy-
sis reveals a triad mechanism: the network structure affects how the PRC is read out to determine the syn-
chrony tendency, the synchrony tendency affects how the STDP works, and STDP affects the network struc-
ture, closing the loop.
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Synchrony of a population of nonlinear oscillators has
been a subject of interest in various biological systems as
well as in physics �1–3�. Synchrony tendency of coupled
oscillators or neurons is predicted by the phase response
curve �PRC� of a neuron that describes an amount of advance
or delay by synaptic input given at a specific phase in an
interspike interval �1–4�. It is intriguing to know how this
useful theory based on the fixed coupling strength between
neurons generalizes to the cases where synaptic strength var-
ies as observed in the real brain.

A number of experiments �5–10� have established that
synaptic strength changes depending on presynaptic and
postsynaptic spike times and theoretical implications of such
spike-timing-dependent plasticity �STDP� have been exten-
sively studied �11–19�. Since the PRC and STDP both refer
to the timings of spikes, a natural question is how these two
properties of a neuronal network interact with each other to
carve a functional network in the brain.

To answer this question, we first use a neuron model
whose PRC can be systematically controlled �20,21� unlike
the simpler leaky integrate-and-fire �LIF� model. The model
neurons favor either asynchronous �model A� or synchronous
�model B� firing depending on the values of the model pa-
rameters.

Our simulations show that STDP working on the network
of model A neurons converts asynchronously firing neurons
into three or more cyclically activated clusters of neurons.
Interestingly, model A neurons can synchronize within a
cluster despite their preference to asynchrony because, as we
see later, STDP selectively disrupts intracluster connections,
nullifying the asynchrony preference.

When STDP works on the network of model B neurons,
however, the neurons simply get synchronized globally,
analogous to what was observed in Ref. �22�, and nothing
peculiar happens.

We will further show that the self-organized cyclic activ-
ity appears also under biologically realistic settings using a
Hodgkin-Huxley-type neuron model, suggesting the general-
ity of the concept.

In the self-organization, PRC specifies the timing prefer-
ence and influences the way STDP works. Importantly,
STDP in turn influences the way PRC is read out. Before the
STDP learning begins, the initial slope of an effective PRC
�defined later� determines the stability of the global syn-
chrony. After the STDP learning forms the cyclic activity
consisting of n clusters, the slope of the effective PRC at �
=2��1−1 /n� determines its stability. In this way, the two
key features of spiking neurons, PRC and STDP, work syn-
ergetically to organize functional networks in the brain.

STDP was previously shown �23–25� to help the pace-
maker neuron entrain an innervated neuron�s�, which was
called “frequency synchrony” meaning that neurons start fir-
ing at the same frequency but with different phases as op-
posed to the “phase synchrony” studied here. Studying the
frequency synchrony is the indispensable first step to under-
standing the oscillators or neurons because the phase syn-
chrony is possible only after frequency synchrony is estab-
lished. Building upon the firm theoretical ground of
frequency synchrony �1,23–25�, it is now important to ask
when and how the frequency synchrony specializes to the
phase synchrony because neurons in the phase synchrony
can send out a large composite excitatory postsynaptic cur-
rent �EPSC� that evokes a response in innervated neurons
quite reliably. On the other hand, neurons in the frequency
synchrony can only send out original tiny EPSC.

We consider a population of neurons firing quasiperiodi-
cally. To simulate the activity of the neurons, we use a spik-
ing neuron model proposed by Izhikevich �20�. Depending
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on the values of four parameters, a, b, c, and d, this model
can produce many different voltage trajectories similar to
what are found in real neurons. Fifty model A neurons that
favor asynchrony �a=0.02,b=0.2,c=−50,d=1.26� are
connected in an all-to-all manner with uniform synaptic
strength and with a range of synaptic delays of 2�0.2 ms.
The neurons fire quasiperiodically driven by suprathreshold
stochastic inputs, I= I0+���t� with I0=30 mV /ms and
�=1.5 mV /ms1/2, where ��t� is the Gaussian white noise.

With no synaptic plasticity at work, initial uniform distri-
bution of firing phases �Fig. 1�a�� remain asynchronous be-
cause the neurons favor asynchrony. However, the effects
of the standard additive STDP rule with hard boundaries
�0�w�1� defined �14� by

�w = �A+ exp�− �t/	+� for �t 
 0

− A− exp�− ��t�/	−� for �t � 0,
� �1�

with A+=0.05, A−=0.0525 and 	+=	−=20 ms converts the
asynchronous firing into clusters of synchronous firing �Fig.
1�b��. We note that there are cases where neurons neither
favor the total synchrony nor the total asynchrony but are
clustered due to higher harmonic components of a phase re-
sponse curve without any involvement of the synaptic plas-
ticity �26�. However, the phase response curve of the present
model does not contain a large higher order harmonics and
our simulations show no sign of clustering without the syn-
aptic plasticity.
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FIG. 1. �Color� Self-organized
clustering of model A neurons by
STDP. Fifty model A neurons fire
in complete asynchrony before the
STDP learning starts. �a� Voltage
trajectories of all the neurons
drawn in different colors are over-
laid. �b� The neurons start firing in
three different clusters with intra-
cluster synchrony due to STDP.
�c� A raster plot corresponding to
�b�. Neurons are aligned accord-
ing to spike times. �d� A gray scale
representation of the connection
strength between neurons with
black being the strongest. �e� The
connection matrix when the
higher-order rule of STDP is ap-
plied. A synaptic change is dis-
counted by 1−exp�−�tpostspike 2

− tEPSP by pre� /	remove� when a
triplet of event, tpostspike 1

� tEPSP by pre� tpostspike 2, hap-
pened. �f� A schematic drawing
showing the network topology
corresponding to �d� and �e�. ��g�
and �h�� Positive feedback mecha-
nism leading to the wireless clus-
tering. In �g�, the vertical lines in-
dicate spike times of two neurons;
the small wedges indicate EPSPs
elicited by the spikes. In �h�, dis-
tributed firing phases of neurons
are represented by the filled
circles in different colors.
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The network topology underlying this clustered synchro-
nous firing is known by looking at the learned synaptic
strengths as shown in Fig. 1�d�, where neurons are indexed
according to firing times after the learning �t�9.89 s�. The
firing interval is about 22 ms, so the synaptic delay is about
10% of it �27�. The three divisions apparent in Fig. 1�d�
correspond to three synchronously firing clusters of neurons
�Fig. 1�c��.

Interestingly, STDP turns out to have removed the intrac-
luster connections almost completely �Fig. 1�d��. In fact,
such clustering without connections is observed commonly
under various simulation conditions and we will call it wire-
less clustering.

To understand how it happens, we need to revisit the ex-
perimental literature of STDP with care. The standard STDP
rule implies potentiation for positive timing difference �t
= tpost− tpre�0, and depression for a negative timing differ-
ence �t�0. Many have argued that the asymmetry of this
rule produces a one-way coupling �see, e.g., Ref. �14��. Such
arguments would be valid if �t= tpost− tpre represented the
time difference between postsynaptic and presynaptic spikes.
However, actually most experimental literature �5–10� de-
fines �t to be the time difference between a postsynaptic
spike and the onset or peak of the somatic excitatory
postsynaptic potential �EPSP� induced by a presynaptic
spike: �t= tpostspike− tEPSP by pre. Hence the above argument
does not apply. A somatic EPSP should always lag behind a
presynaptic spike for a few milliseconds. Therefore, if two
neurons fire in exact synchrony �Fig. 1�g��, �t is negative
�23� for both directions, thereby weakens connections bidi-
rectionally.

Now, how does this mechanism convert initial asynchro-
nous firing to clustered synchronous firing �Fig. 1�b��? Initial
asynchronous firing �Fig. 1�a�� is represented as firing phases
evenly spread around the circle �Fig. 1�h�, left�. The firing
remains asynchronous without STDP because the neurons
favor asynchrony. However, with the phases of many neu-
rons squeezed into the circle, any single neuron must have
neighboring neurons that unwillingly fire synchronously with
it �Fig. 1�h��. Among these neurons, the above-mentioned
mechanism weakens their connections bidirectionally. As
their synaptic connections weaken, mutual repulsion is also
weakened. This then further synchronizes their firings. This
positive feedback mechanism develops wireless clusters
naturally �Figs. 1�h��. Although this mechanism qualitatively
explains how the clustering happens, a quantitative question
of how many clusters are formed requires further consider-
ation. We will later see that a stability analysis tells the pos-
sible number of clusters.

In contrast to the vanishing intracluster connections, the
intercluster connections survive and can be unidirectional
�Fig. 1�d��, which defines the cyclic network topology such
as shown in Fig. 1�f� �upper�.

It is intriguing to ask how we can change this three-cycle
topology. There are reports of higher-order rule of STDP
�28,29� and such higher-order effects were systematically de-
scribed by the formalism given in Ref. �30�. Here, we chose
the rule proposed in �29� and find that it increases the num-
ber of clusters �Fig. 1�e��. The higher-order rule implies the

gross increase in the long-term potentiation �LTP� effect be-
cause LTP override the immediately preceding long-term de-
pression �LTD�, while LTP only partly cancels the immedi-
ately preceding LTD. The enhanced LTP effect is likely to
increase the total number of potentiated synapses, which is
consistent with the increased ratio of black areas in Fig. 1�e�
compared to Fig. 1�d�.

In contrast to such cluster-wise synchrony observed with
model A neurons, model B neurons that favor synchrony �a
=0.02,b=0.2,c=−50,d=40� self-organize into the globally
synchronous state. Due to the global synchrony, mutual syn-
aptic connections are largely lost, and each neuron ends up
being driven by the external input individually, leaving little
sense of being present as a population �27�. The global syn-
chrony gives too strong an impact and also has minimal cod-
ing capacity because all the neurons behave in an identical
manner, and it appears to bear more similarity to the patho-
logical activity such as epileptic seizure in the brain than to
meaningful information processing.

By contrast, the clustered synchrony arising in the net-
work of model A neurons appears functionally useful. Gen-
erally in the brain, the unitary EPSP amplitude ��0.5 mV�
is designed to be much smaller than the voltage rise needed
to elicit firing ��15 mV�. Therefore, single-neuron activity
alone cannot cause other neurons to respond. Therefore, the
single-neuron activity is unlikely to work as a carrier of in-
formation transferred back and forth in the brain. In contrast,
the self-organized assembly of tens of model A neurons
�Figs. 1�d�� looks to be an ideal carrier of information in the
brain because their impact on other neurons is strong enough
to elicit responses reliably. In addition, those clusters can
code the timing.

The PRC, Z�2�t /T�, which represents the amount of ad-
vance or delay of the next firing time in response to the input
at t in the firing interval �0,T� has been mostly used to de-
cide whether a coupled pair of neurons or oscillators tend to
synchronize or desynchronize under the assumption that the
connection strengths between the neurons are equal and un-
changed. Specifically, when a pair of neurons are mutually
connected and a spike of one neuron introduces a current
with the wave form of EPSC�t� in an innervated neuron after
a transmission delay of 	d, the effective PRC defined as
�−���= 1

T	0
TZ�2�t� /T�EPSC�t�−	d−T �

2� �dt� decides their
synchrony tendency. If the slope of �−��� at �=0 is positive
�negative�, the two neurons are desynchronized �synchro-
nized�. This synchrony condition is considered to be taken
over to a population of neurons coupled in an all-to-all or
random manner as far as the connection strengths are un-
changed. Theoretically calculated �−���s for models A and B
�Figs. 2�a� and 2�b�� explain that the nonplastic all-to-all net-
work of model A �B� neurons exhibit global asynchrony
�synchrony�. Both model A and B neurons belong to type II
�31� so that both model neurons favor synchrony if they are
delta coupled with no synaptic delay. However, the biologi-
cally realistic couplings makes model A neurons favor asyn-
chrony.

After STDP is switched on, the network consisting of
model A neurons, is self-organized into the three-cycle cir-
cuit �Fig. 1�d�� with the successive phase difference of the
clustered activity being equal to �suc�=2� /3. We can show
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that the slope of �−��� not at the origin but at �=2�−�suc�
now determines the stability of the three-cycle activity: if
�−��2�−�suc���0, the three-cycle activity is stable. Figure
2�a� ensures that the three-cycle activity shown in Fig. 1�c� is
stable.

The stable state is achieved through the following syner-
getic process �Fig. 2�c��: PRC determines the preferred net-
work activity �e.g., asynchronous or synchronous�, the net-
work activity determines how STDP works, STDP modifies
the network structure �e.g., from all-to-all to cyclic�, and the
network structure determines how the PRC is read out �e.g.,
�=0 or �=2�−�suc���, closing the loop.

Similarly, we can show that the n-cycle activity whose
successive phase difference equals �suc�=2� /n is stable if
�−��2�−�suc���0. PRCs of biologically plausible neuron
models or real neurons �32–41� generally have a negative
slope in a later phase of the firing interval and converge to
zero at �=2� because the membrane potential starts the re-

generative depolarization and becomes insensitive to any
synaptic input. The corresponding effective PRCs inherit this
negative slope in the later phase and tend to stabilize the
n-cycle activity for some n.

Next we show that the self-organized cyclic activity in the
wireless clustering is also observed in a biologically realistic
setting. Our simulations as described in Ref. �42� with 200
excitatory and 50 inhibitory neurons modeled with the
Hodgkin-Huxley �HH� formalism exhibit the three-cyclic ac-
tivity with the wireless clustering �Figs. 3�a� and 3�b��, in-
deed. The firing interval is about 30 ms and the mean syn-
aptic delay is about 4% of it. The setup here is biologically
realistic in that �1� neurons are modeled with the HH formal-
ism, �2� a physiologically known percentage of inhibitory
neurons with nonplastic synapses are included, and �3� neu-
rons fire with high irregularity due to large noise in the back-
ground input unlike the well-regulated firing as shown in
Fig. 1�c�.
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FIG. 3. Conductance-based
model also develops the wireless
clustering. �a� A raster plot of 200
HH-type excitatory neurons show-
ing three-cycle activity. �b� The
corresponding connection matrix
showing the wirelessness. �c� Ef-
fective PRC or �−��� of the
conductance-based model. �d� The
raster plot of the same neurons
when the intracluster connections
are set to exactly zero.
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Interestingly, the effective PRC �Fig. 3�c�� of the HH-type
neuron shares important features with that of model A: the
positive initial slope implying the preference to asynchrony
and a negative later slope stabilizing the three-cycle activity.

Technical difficulty in the HH simulations is, however,
their massive computational demands due to the complexity
of the system. That difficulty hindered theoretical analysis,
therefore the study in Ref. �42� remained largely experimen-
tal. In particular, we tried hard to understand why we never
observed four-cycle activity or longer, in vain. However, the
analytic argument we developed here with the simplified
model gives a clear insight into this complex system. A com-
parison of Figs. 2�a� and 3�c� reveals that the negative slope
of �−��� of the HH model is located more left than that of
model A, indicating less stability of long cycles in the HH
simulations. In addition, with the larger amount of noise in
the HH simulations in mind, we can easily expect that four-
cycle activity and longer can be destabilized in the HH simu-
lations. Thus, the theory we developed here on the simplified
system serves as a useful tool to understand complex sys-
tems.

Nevertheless, there is also an interesting difference be-
tween the model A and HH simulations. Apparently, the in-
tracluster wirelessness is a fairly good approximation in the
HH model simulations �Fig. 3�b��. However, the wirelessness
is not as exact as in the model A simulations �Figs. 1�d� and
1�e��. Interestingly, an elimination of the residual intracluster
connections destabilizes the cyclic activity �Fig. 3�d��, indi-
cating the supportive role of the tiny residual intracluster
connections.

In the previous simulation study Ref. �43� using the LIF
model, cyclic activity was observed to propagate only at the
theoretical speed limit: it takes only 	d from one cluster to
the next, implying the zero membrane integration time. To
understand why it was the case, we first remind one that the
effective PRC needs a negative slope at 2�−�suc� to stabi-
lize the cyclic activity. However, the slope of the original
PRC of an LIF model, Z���=c exp� T

	m

�
2� �, is always positive

except at the end point, where Z�2�−0�=c exp� T
	m

� and
Z�2�+0�=c, implying Z��2��=−. This infinitely sharp
negative slope of the PRC at �=2� is rounded and displaced
to 2�−2�	d /T in the corresponding effective PRC, �−���
�see its definition�. Since this is the only point where �−���
has a negative slope, the cyclic activity is stable only if
�suc�=2�	d /T, implying the propagation at the theoretical
speed limit.

We demonstrated an intimate interplay between PRC and
STDP using the Izhikevich neuron model as well as the HH-

type model. The self-organization or unsupervised learning
by STDP studied here complements the supervised learning
studied in �35�. The present study complements previous
studies using the phase oscillator �22,25�, where its math-
ematical tractability was exploited to analytically investigate
the stability of the global phase or frequency synchrony. We
derived a stability condition for the n-cycle activity. How-
ever, we note that this stability condition is a necessary con-
dition but not a sufficient condition. In order to understand
why the three-cycle activity preferentially appeared rather
than the four-cycle, we may need more analytical studies.
The propagation of synchronous firing and temporal evolu-
tion of synaptic strength under STDP is known to be ana-
lyzed semianalytically with the Fokker-Planck equation
�15,16,18,19,44�. It is an interesting future direction to see
how the Fokker-Planck equation can be used to understand
the interplay between PRC and STDP.

Although STDP has been observed widely in the brain,
what circuit can be formed by this plasticity remains elusive.
The present study provides a clue to this question by dem-
onstrating that the wireless clustering develops if STDP acts
on a population of neurons working in the suprathreshold
regime. We did not observe any nontrivial structure forma-
tion in the subthreshold regime. The decreasing firing regu-
larity along the pathway from sensors to relay cells and to
cortical cells �45� may imply that the wireless clustering ap-
plies better in the subcortical areas. In the rat visual cortex,
they observed a cluster of excitatory neurons sharing the in-
put �46�. However, their clusters were internally wired in
contrast to what we saw here. Such wired, instead of wire-
less, clusters may be formed by a mechanism distinct from
what we discussed here. Alternatively, wireless clusters
might have been formed first under a suprathreshold condi-
tion in an early developmental stage, then additional plastic-
ity has developed the intracluster coupling to reinforce the
clusters. Exploring brain areas and states appropriate for the
wireless clustering is the important future plan.
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